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Torsional oscillations of a plane in a viscous fluid 

By S.  ROSENBLAT 
Department of Applied Mathematics, University of Liverpool 

(Received 15 December 1958) 

On the assumption that the rotational oscillations of a rigid plane are small, 
boundary-layer type solutions of the Navier-Stokes equations are attempted by 
an expansion of the velocity components in power series of the amplitude. First- 
and third-order approximations to the transverse velocity are obtained, from 
which a correction to the moment on a disk of finite radius is found. 

The first non-vanishing approximation to the radial-axial flow (a second-order 
term) is seen to have a steady component and a component with frequency twice 
that of the plate. The former component appears to persist outside the boundary 
layer, and at large distances from the plate to have the character of an irrotational 
stagnation flow. A re-examination not involving the series approximation re- 
veals that although steady radial flow does exist outside the boundary layer, it is 
a viscous flow and is confined within a secondary layer. The ratio of the thick- 
nesses of the two layers is found to be inversely proportional to the amplitude of 
the oscillations. These results indicate that a second-order flow in a region where 
the fist-order flow field vanishes should not be accepted without further 
discussion. 

1. Introduction 
The problem of small rotational oscillations of a body of revolution has 

received considerable attention (see, for example, Kestin & Persen 1954), since it 
relates to a well-known method of measuring the coefficient of viscosity. Prior 
to the work of Carrier & di Prima (1956), however, virtually all investigations used 
Stokes’s slow-motion equations, in which the flow was assumed to be entirely 
circumferential. Consequently, errors arising from the presence of radial flow 
were neglected. 

Carrier & di Prima were principally concerned with evaluating the correction 
to the torque on a sphere when a second approximation is taken. In  the course of 
the calculations a radial flow was derived but was not discussed in any detail. 
Commencing with the Navier-Stokes equations in spherical polar co-ordinates, 
these authors expanded the velocity components in powers of the amplitude of 
oscillation, and solved the resulting differential equations. The method led to 
very complicated expressions which were eventually reduced to a practical form 
by assuming small viscosity. 

On the other hand, an early application of the boundary layer equations to  
time-periodic flows was undertaken by Schlichting (1932), who examined the 
small two-dimensional oscillations of a cylinder in a, stationary fluid. Using a 
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similar small-amplitude expansion, Schlichting found a first-order fluctuating 
shear layer close to the body. The second approximation, however, yielded a 
steady secondary flow which did not vanish at large distances from the cylinder 
and whose magnitude was independent of the viscosity. This effect was ascribed 
to Reynolds stresses set up in the fluid by the oscillatory motion. 

The primary aim of the present paper is to investigate the secondary flows 
which arise when an infinite plane lamina performs small torsional oscillations in 
a fluid otherwise at rest. Since for a plane the terms neglected in the boundary- 
layer approximation vanish identically, the Navier-Stokes equations may be 
used to derive solutions of the boundary-layer type. If h is the frequency of the 
oscillations, then l /h is a typical time, and the boundary-layer thickness will 
clearly be of order J(v /A) ,  where Y is the kinematic viscosity. 

Expansion of the velocity components in powers of 6, the amplitude of the 
oscillation, leads to two sets of linear partial differential equations, with simple 
boundary conditions. The first-order solution is simply the well-known unsteady 
shear layer for the transverse velocity. 

The second-order solution reveals a secondary radial-axial flow composed of 
a steady term and a term of frequency 2h. It appears that, as in Schlichting’s 
solution, the steady radial component persists outside the boundary layer. Its 
form at large distances from the plate is found to be that of an irrotational 
stagnation flow. 

Further considerations result in a correction to the transverse velocity, of third 
order and containing terms of frequency h and 3h. It is found that if lM1 is the 
amplitude of the first-order torque on a disk of radius a, then inclusion of third- 
order effects leads to a torque of amplitude ]MI (1 - 0-101~~).  This contrasts with 
\HI (1 +O-015e2)for the torqueonasphereobtainedby Carrier &DiPrima(1956). 

A re-examination of the steady radial flow is then undertaken. It is indicated 
that this flow is set up within the boundary layer by the action of centrifugal 
force, compared with which the convective inertia terms are neglected in the 
series approximation. However, outside the boundary layer the centrifugal term 
becomes vanishingly small, while (axially) inward convection is effective in pre- 
venting outward diffusion of vorticity beyond a certain distance. Thus the power 
series in e ceases to converge outside the boundary layer, and for a correct repre- 
sentation of the flow here the convective terms must be included in the equation 
of motion. 

A solution of the appropriate equation is then obtained, first by an approxi- 
mate Pohlhausen-type method, and subsequently by numerical means. These 
solutions show that radial flow, although existing outside the boundary layer, is 
viscous and is confined within a secondary layer whose thickness is order e-l 
times that of the shear layer. Outside this secondary layer there is merely a con- 
stant axial inflow, as demanded from continuity considerations. Thus we conclude 
that the irrotational flow, derived from the series approximation and qualitatively 
similar to that obtained in the two-dimensional case by Schlichting (1932), does 
not in fact occur. 
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2. Method of solution 
Suppose the plane z = 0 to represent a lamina of infinite extent, and the space 

z =- 0 to be occupied by an incompressible viscous fluid of densityp and kinematic 
viscosity v. Let (r,  q5, x )  be a set of cylindrical polar co-ordinates, fixed in space, 
and let the lamina perform torsional oscillations about the axis r = 0, the fluid 
being otherwise at rest. If the amplitude of angular displacement is E, and the 
frequency of oscillation is A, then the plate has angular velocity w cos At, or, in 
complex notation, w eihl, where w = EA. 

Let u, v and w denote respectively the radial, transverse and axial components 
of velocity, and p the fluid pressure. Then the appropriate Navier-Stokes equa- 
tions of motion are 

while the equation of continuity is 

Since radial symmetry obtains, all derivatives with respect to q5 are omitted. The 
relevant boundary conditions of the problem are 

"'1 (5) 

} (6) 

u = 0, v = ru&, w = 0 at x = 

u+O, v + O  as x - f c o .  

We now attempt a solution of the system (1)-(5) in the form 

u = ruFf(7,7) ,  v = rwG(y,T), w = -2u4(2v /h)F(7 ,7) ,  

P = P(Z,t) ,  z = J(2v/A)y,  t = 7/A,  

where the accent denotes differentiation with respect to 7. The continuity 
equation is satisfied, equations ( 1 )  and ( 2 )  reduce to the dimensionless forms 

respectively, and the boundary conditions become 

F = F' = 0, G = ei* at 7 = 0; F'+O, G - t O  as y+w. (9) 

The velocity components u, v and w are now completely determined from (7)-(9), 
whereupon the pressure can be obtained from (3). 
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ascending powers of the parameter e. On substituting the series 

and 

into (7) and (S), and equating coefficients of like powers of e, we obtain the 
following systems of linear partial differential equations : 
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It is next assumed that a solution can be found by expanding F and G in 

F(7,T) = F ~ J ( ~ , T )  +eF;(q, 7 )  +E2&(7, 7 )  + - * A  

G(7, 7) = Go(7) 7 )  + eGl(797) + e2G2(7, 7 )  + - *. 

(10) 

( 1 1 )  

aF; 
- a7 + 2 [ F ~ F ; - G o G l - F o F ; - F ~ F l ]  = +F[ ,  etc., 

3 + 2[FkG1 + P i c , -  FOG;- FIGh] = &G;, etc., a7 
with boundary conditions 

F N = F X = O  at 7 = 0 ;  FL+O as ~ - + o o ,  N = 0 , 1 , 2  ..., (14) 

Go = ei7, GN+1=0 a t  q = O ;  GN+O as q + q  N = 0 , 1 , 2  .... (15) 

It is clear that the first approximations (12a) and (13a) are equivalent to 
neglecting u(au/ar), w(au/ax), v2/r compared with au/at in ( l ) ,  and u(av/ar), 
w(av/az), uv/r compared with &/at in ( 2 ) .  Such an approach was employed by 
Schlichting (1932), and at this stage it appears to be valid here provided the 
amplitude e is sufficiently small. 

3. First approximation to the transverse velocity 
The solution of equation (12a) satisfying the boundary conditions (14) is 

ob.viously 
Fo(7,7) = 0. 

On the other hand, (13a) has the solution 

which, in real notation, is 
Go(q, 7) = &e-(l+i)p, 

Go(q, 7) = e-v cos (7 - 7). 

This is the well-known shear-wave solution for a flat plate oscillating in its own 
plane in a fluid at rest. Thus its properties have been fully discussed and need 
not be considered further here. The continuous curves in figure 2 illustrate the 
function 

e-7 cos (7 - 7) - cos 7 ,  

which is merely Go(7, 7 )  taken relative to the oscillating plate. 

velocity given by 
Since Fo = 0, the first-order solution of the system ( 1 ) - ( 5 )  is a transverse 

v = rw e-q@/2v)zcos (At - 2/ (A/2v)  x ) ,  (18) 
14 Fluid Mech. 6 
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and no radial or axial velocity. The transverse shearing stress is defined to be 

so that the first approximation is, from (18), 

7t = - prw 4( vh) COB (At + 2.). (20) 

This shearing stress is seen to have a phase lead of 477 over the oscillations of the 
plate. 

Although we are dealing with a plane of infinite extent, the results obtained 
above may be applied to a circular disk of radius a provided edge effects can be 
neglected. This seems to be justified if a is large compared with the thickness of 
the boundary layer. In this case the frictional torque (for the two sides of the ~. 

disk) is 
M = - 477 jou r 2 ~ t  dr. (21) 

Hence, using (20), the first approximation to the moment is 

M = na4ps J( vA3) cos (At + $77). (22) 

These results are well known. 

4. Radial and axial velocities 
Since Po = 0, the first non-vanishing approximations to the radial and axial 

velocities are obtainable from the second-order solution Fl of equation (12 b) .  
Substituting from (17) into (12b), we have 

with boundary conditions 

F1(O) = 0, P;(o) = 0, Fi(C0) = 0. 

The form of (23) invites a substitution 

FA% 7 )  = f (7) + h(r) eZi', 

2&' - 8 e-2(l+i)v = &hh", 

(25)  

( 2 6 4  

---a8 = 8f "'3 (26b) 

and this leads to the two equations 

with f (0) = f '(0) = h(O) = h'(0) = 0; f ' (00) = ~'(co) = 0. 

The solution of (26a) is readily seen to be 
l + i  
16 

h = A + B e-d2(1+07 + Ce2/2(l+i)8 ___ e-2(1+08, 

where A,  B and C are integration constants. Application of the boundary condi- 
tions immediately leads to 

l + i  l + i  
(1 -J2), B = - 

8 4 2  ' 
A = -  

16 
c = 0; 
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The requirements f (0) = 0 and f '(0) = 0 yield A = - 3, B = t, while in order 
that f should remain finite as 7 -+ co it is necessary that C 5 0. These values give 

and 

which, however, does not satisfy f '(7) -+ 0 as T,I -+ a. The significance of this result 
will be discussed subsequently. 

Reverting to real notation, we have from (25) ,  (27)  and (28)  

P1(q, 7 )  = -+( 1 - 27 - e-2q) - M ( 2  - 4 2 )  cos (27 +an) 

- 2 e-d2q cos (27 - d27 f i n )  + 4 2  e--2q cos (27 - 27 + &)}, (29)  
and Pi(7, 7 )  = a( 1 - e-2q) + ${e-d2q sin (27-  2/27) - e-2V sin (27 - 27)).  (30) 

Equations (29 )  and (30) show that the radial and axid velocities are each com- 
posed of a steady term and an unsteady term of frequency twice that of the tor- 
sional oscillations. Indeed, this was to be anticipated on physical grounds. For 
a fluid particle adjacent to the wall and distance r from the axis experiences a 
centrifugal force prQ2 per unit volume, where Q is the angular velocity. Since 
!2 = w cos At, the centrifugal force is prw2 cos2 At = +prwz( 1 + COB 2At), having the 
two components mentioned. 

We may therefore divide the radial and axial velocities u and w each into a 
steady part, denoted respectively by us and w,, and a fluctuating part uf, wf. 
From equations ( 6 ) ,  (29 )  and (30), these are given by 

(33) 
rue 

uf = {e-d(A/v)z sin (27 - J ( A / v )  z )  - e-d@*/v)"sin (27 - 2/(2h/v) z)}, 

Wf = yd(F) ( ( 2 - 2 / 2 ) C 0 S ( 2 7 + ~ ~ ) - ~ e - ~ ~ ~ ~ ' ~ s c o s ( 2 7 - ~ ( h / ~ ) Z f ~ ~ )  

+ 4 2  e-d(2hlv)~cos (27 - 2/(2A/v) z + in)}. (34) 

Relative to the oscillations of the plate, the unsteady radial velocity uf is seen 
to have a phase lag which tends to +n at the plate. Moreover u, decreases ex- 
ponentially with distance from the wall, the rate of diminution depending on the 
factor J(v/A) ,  which is the order of thickess of the boundary layer. That is, the 
fluctuating radial component becomes negligible outside the boundary layer. 

14-2 
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This is shown in figure 1, which illustrates the variation of the non-dimensionalized 
velocity 4uf/rwe with 7 = ,/(h/2v) z at selected times. 

The unsteady axial term wf has a phase lead of 2.. over the transverse velocity. 
Outside the boundary layer, continuity demands that some unsteady axial 
velocity should persist, and in fact, for large z, 

W f  N Ed(;) 8 ( a - J z ) c o s ( 2 7 t ~ n ) ,  

which is quite small for small viscosity. 
n 

' \  nr=;n 

4 1.0 \ 

1 
- -02 - 0 1  0 0 1  

-L 
0 2  

FIGURE 1. Variation of 4u,/rwe with 7 = (A/2v)  z at times (i) At = 0, (ii) At = in, 
(iii) At = &-. 

The centrifugal and shearing forces at the plate give rise to steady components 
of radial and axial velocity. The radial velocity us, as seen from equation (311, 
consists of two terms, one of which decreases exponentially with z, and so 
vanishes outside the boundary layer, whereas the other is independent of distance 
from the plate. Thus for large z, 

rue 
4 '  

us N - (35) 

Consequently, it  would appear that, unlike the fluctuating component, a steady 
radial flow persists outside the boundary layer. Furthermore, this flow has the 
important feature that its magnitude is independent of the value of the kinematic 
viscosity. 

Correspondingly, the asymptotic axial flow outside the boundary layer is, 
from (32), 
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Here the first term represents the axial velocity required by continuity to balance 
the radial flow within the boundary layer, while the second term, independent of 
viscosity, balances the asymptotic radial flow outside the boundary layer. 

The form of equations (31) and (32) permits the definition of a stream function 
for the steady radial-axial flow, namely 

such that 

satisfying continuity requirements. At large distances from the plate we have 
that 

which is the stream function of an axially symmetrical stagnation flow against an 
imaginary wall distant z = ,/(v/2h) from the plate. Thus we have achieved the 
apparent result that torsional oscillations of the plate induce a steady potential 
flow which is such that the smaller the viscosity the closer its streamlines 
approach the plate. We re-examine this result in Q 6. 

As a matter of interest we calculate an approximate expression for the pressure 
gradient normal to the disk. Prom equations (3) and (6), we find 

to first order in e. Substituting from (29) and (30), we obtain eventually 

The contribution from the potential-type flow is of order e2, and so has been 
neglected here. 

Finally, we calculate the radial shearing stress at the plate, 

..=p”(g) z=o . 
Substituting for u from (31) and (33), we find 

5. Third approximation to the transverse velocity 
Since Fo = 0, equation (13b) becomes 

of which the solution satisfying G,(O) = 0, G,(co) = 0 is clearly 

G,(r,7> = 0. 
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(It can moreover easily be demonstrated that 

Fm(q,~) = 0, Gm+l(q,~)  = 0, N = 0,1 ,2  ....) 

Thus the second approximation to the transverse velocity is zero, and the third 
approximation is given from G2(q, T ) ,  which satisfies the equation 

(40) - aG2 + 2[F'; Go - F1 G;] = aGi, 
a7 

with boundary conditions G2(0) = 0, G, -+ 0 as q + co. From equations (17), (29) 
and (30) we h d  that, in complex notation, 

F' G 1 0 -  1 0 -  $' G' - 4 ei7 Q( 1 - i) e-(1*)? + (1 + i) 7 e-(l+OV - (2 - i) e-(3+6)B 

(? i2) 1 
( 

- &(42 - 1) e-(li)B + - - - edd2+1+6(d2-1)lB 

(2 - 4 2 )  e-(dz+l)(l+i)q- (42 - 1) e-(l+i)g). (41) 
i 

16 
+- e%7{e-3(1+i)B - 

The form of (41) suggests that a solution of equation (40) could be 

7 )  = x(7) ei7 +&I) e3i7Y (42) 

and on substituting (41) and (42) into (40), we obtain the pair of linear differential 
equationa 

x" - 2ix = a( 1 - i) e-(l+O B + ( 1 + i) 7 B - (2 - i) e-(3+Q B 

&(A2 - 1) e-(I-<)q + - _ _  e-td2+l+i(~2-1)1~, (43a) - (: i2) 
5" - 6ig = !- [e-3(1+6)B - (2 - 4 2 )  e-(d2+1)(1+01]- (42 - 1) e-(l+Q~], (436) 4 

with boundary conditions 

x(0) = C(0) = x(co) = S(co) = 0. 

The real and imaginary parts of the solutions x, 6 of (43 a) and (43 b)  are found 
to be 

a{x} = - cos + $7 + &721 e v  +A e-37) + sin q( r 5 4 ; i  21 + a71 e- + 8 e+) 

+ e-(d2+1)1 [cos (42 - 1) 7 - 4 2  sin (42 - 1) 71, (44a) 
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G, = W(x) cos 7 - S{x) sin 7 + W{Q COB 37 - Sic) sin 37, 
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From equation (42) we have that, in real notation, 

(45) 

w = rw(Go+c2G,), (46) 

so that to third order the transverse velocity is 

with Go and G, given respectively by (17) and (46). Figure 2 illustrates the dimen- 
sionless transverse velocity relative to a set of axes fixed in the plate. The con- 
tinuous curves represent, for selected times, the function Go - COB 7, while the 
broken curves represent 

for the case 6 = 4. The vertical straight lines are the values of cos T at the relevant 
times. It is seen that the difference between the first and third approximations is 
quite small close to the plate and rather larger at moderate distances (inside the 
boundary layer). 

Go + @GC, - cos 7 

(v/rw)-cos AC 
FIGVRE 2. Variation of (w/rw) - cos At with 7 = 4(A/2v )  z at times (i) At = 0, (ii) At = in, 
(iii) At = &r, (iv) At = 47r: first approximation; - - - - second approximation. 

Using (44)-(461, we now ihd for the fluctuating shearing stress at the wall 

x {sin7( 1 - 0 . 2 6 2 ~ ~ )  - 0 . 0 1 2 ~ ~  sin 37 - COB 7( 1 + 0*060e2) + 0*012s2 cos 37). 

Hence by (21) the moment on a disk of radius a is, to a third approximation, 
(47) 

x {cos T( 1 + 0.060~~) - 0.012~2 COB 37 - sin7( 1 - 0 . 2 6 2 ~ ~ )  + 0 . 0 1 2 ~ ~  sin 37). (48) 
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From this equation and (22), we find for the magnitude of the fluctuating torque 

\M’I = [MI {1-0*101€2}. (49) 

As a matter of interest it  can easily be verified that the result (49) remains un- 
altered if the terms in cos37, sin37 are omitted from the preceding formulae. 
This means that, to third order, the third harmonic terms only have an effect on 
the phase of the fluctuating torque. 

We see that the third approximation to the transverse velocity necessitates a 
negative correction to the moment of 0.101e21MI; that is, a decrease of about 
2.5 yo when E = t and 0.6 % when e = 2. These values may be contrasted with 
those obtained, by a somewhat different procedure, by Carrier & Di Prima (1956) 
for a torsionally oscillating sphere. Their result, translated into our notation, was 

(N‘(  = (MI {1+0~015t?), 

yielding an increase of about 0.4 % when e = 4 and 0.1 % when E = &. Thus it 
would seem that for a disk the increment to the torque is about 7 times as great as 
for a sphere and of opposite sign. 

Finally, it should be noted that the results (47)-(49) have value only if equa- 
tions (29) and (30) constitute a good approximation to the second-order radial- 
axial flow close to the plate. It is indicated in $6 that this is the case, even though 
they are a bad approximation at larger distances. 

6. The steady radial flow 
At this stage a discussion of the results obtained so far is worth-while. As 

demonstrated in figure 2, the value of the transverse velocity is not greatly 
altered when the third approximation is taken in place of the first; and, as 
expected, the third approximation vanishes outside the boundary layer, even 
though its evaluation involves the non-vanishing radial-axial terms. Hence, 
there is no reason to doubt the validity of the series expansion (1 l), and therefore 
we assume in the subsequent calculations that the transverse velocity is given, to 
a good approximation, by 

v = rw e-d(h12v)Zcos {At - 4(h/2v) z}. (18 bis) 

Moreover, we assume that equations (33) and (34) adequately represent the 
unsteady radial and axial velocities, and do not consider them further here. To 
establish this would of course necessitate quite complicated calculations. 

On the other hand, the unexpected form of the steady radial-axial component 
suggests that in this case a further investigation is warranted. Assuming that u/r 
is independent t- r,  and that there is no radial pressure gradient, the steady 
radial and axial velocities may be taken to be governed by the equations 

and 
aus us aws -+-+- = 0, 
ar r az 
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where V is the root-mean-square value of the transverse velocity (18); that is, 

(52) 

u s = w s = O  at z = O ;  uS+O as z-+co.  (53) 

- rw = - ~ - . \ / ( A / ~ u ) s .  

4 2  
The boundary conditions to be satisfied are 

On the assumption that the series (10) for us, ws is valid, the first approximation 
to us is given from the equation 

whose solution is (31). At large distances from the plate V is vanishingly small and 
consequently the asymptotic equation for us is 

This explains why the radial flow at large distances is independent of viscosity; 
and the solution of (55) is equation (35). 

This solution, however, is acceptable only if the convective inertia terms 
us(aus/&), ws(aus/az) can be neglected for all z, and it is clear on physical grounds 
that this cannot be the case. The vorticity created a t  the plate has imparted to it 
a radial velocity component as a result of centrifugal action. This vorticity diffuses 
away from the plate and beyond the boundary layer. But, as the edge of the layer 
is approached, the transverse velocity becomes vanishingly small, so that radial 
motion is no longer maintained by centrifugal force and can persist only because 
of the diffusion of vorticity to large distances. At the same time the convection of 
the fluid by itself, hitherto negligible, will be principally axial-towards the plate- 
as it has to balance the fluid forced radially out by centrifugal action. It must 
therefore be anticipated that instead of persisting at large z, diffusion of vorticity, 
and consequently steady radial flow, will be limited to within a finite distance of 
the plate-a distance determined by the counteraction of outward diffusion and 
inward convection. 

Applying the$e considerations to the equation of motion (50) we see that the 
inertia terms us( aus/3r), ws( aus/az) are negligible compared with the centrifugal 
term ?/r only in the region where the latter is non-vanishing, that is, within the 
boundary layer. Elsewhere the inertia forces are at least comparable with the 
centrifugal force, and so outside the boundary layer a correct estimation of the 
flow must take account of them. Alternatively, this means that the series 
expansion (10) in powers of E yields valid approximations inside the boundary 
layer only. 

(An interesting parallel to these results is afforded by the well-known Oseen’s 
equations for flow past an obstacle at low Reynolds numbers. In  this case it 
appears that close to the obstacle inertia forces are negligible and Stokes’ equa- 
tions provide a good approximation. But at large distances these inertia forces, 
though still very small, are now of similar magnitude to the viscous forces. Thus 
Stokes’ equations are no longer satisfactory and Oseen’s equations are required 
for a reasonable approximation to the flow field.) 
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We now seek a solution of equations (50)-(53) which does not involve the 
approximation arising from the series (10). On writing 

@(f'2-2Sfn)-ie-Q = $ f J f r  (57) 

The steady radial flow will, by the foregoing argument, be confined within some 
Secondary layer whose thickness, however, may be large compared with that of 
the primary layer discussed so far. By use of a Pohlhausen-type method, an 
approximate solution may be obtained which gives an estimate of the thickness 
of this secondary layer. 

We suppose that the flow takes place within a distance d of the plate. Then we 
seek a solution of the integral of equation (57) over the range 0 to d, with the 
assumption that conditions at co are satisfied at 7 = d. The relevant boundary 
conditions will then be 

atr]=o: f = O ,  f ' = O ,  f " = - l ,  

atr] = a :  f '  = f "  = f "  = ... = 0, 

while integration of (57) now gives 

A solution of (58) may take the form 
f '  = - &{e-W- e-dd>. (59) 

This gives f '  = 0 at  r ]  = 0; moreover, assuming that d @ 1, that is, that the 
secondary layer is considerably thicker than the primary layer, we have 

which nearly satisfies the condition on f "'(0). When r ]  Q 1, e-qld + 1, so that (59) 
behaves like the function f '  of equation (28b) close to the plate. 

f "l(0) = - 1 + O(d-2), 

Substitution from (59) into (58) leads to 
3EB(LX+d) = - 1 
2 4 2 d + l  2 d 

as the equation determining d. It may be noticed that if the terms on the left- 
hand side of (60), which represent the convection, are neglected, we obtain d = co, 
as expected. As it stands, however, equation (60) yields 

+ 0.250 
1.155 a+- 

€ 

for the order of thickness of the secondary layer. Equation (61) shows that if d, is 
the thickness when 8 = a, and d2 that when E = 4, then) 

2 + 1-90. 

Thus we have that provided e is suEciently small, steady radial flow takes place 
within a layer of thickness O(e-l) times that of the primary layer. 
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In  other words, the order of thickness of the secondary layer is 

&/(VIA) = J(./w.>, 

and this could have been estimated from first principles. For steady flow occurs 
in a region where inertia forces are comparable in magnitude with viscous forces, 
that is, where u,(au,/ar) N v(a2u,/az2). Since u, N m e ,  and taking z N S, the layer 
thickness, we find rw2e2 - v(rwe/d2), which gives S - J(v/wE). 

Outside the secondary layer there is merely a constant axial inflow whose value 
is obtained from integration of (59). We find that 

which leads to 
f (a) = @- Q), 

f = 1.09 when e = a, f + 0.52 when e +  Q. (63) 

From equatibn (56) we now have 

%(a) = O ( % W ) ) ,  

technically a .first-order effect. But this is explained by the continuity equation 
which requires that aw,/az N uJr, i.e. that w, - S, W E  N eJ(vh).  

Of course, equation (59) is no more than a rough approximation to the solution 
of (57), useful in obtaining an estimate of d. I n  order to deduce a correct repre- 
sentation of the functions f and f ’, it is necessary to resort to numerical solutions 
of equation (57). Such solutions were calculated with the aid of the Mercury 
Automatic Computer at the University of Manchester, for the two values E = 4 
and 6 = Q. 

These solutions yielded the following results. Taking f’ < 0.01 as a measure of 
the layer within which radial flow is confined, it was found that 

fore = Q, f ’  = 0.01 when q = d, = 13.16; 

for e = 4, f’ = 0.01 when q = d, = 7.24. 

These give 

in close agreement with (62). This tends to confirm our conclusion that steady flow 
occurs within a layer whose order of thickness is 6-1 J(2v/A). Again, it was found 
that for large q, f tends asymptotically to 0.99 when e = a, and to 0.50 when 
e = 4. These values for the inflow also agree with the approximate values (63). 

The steady components of radial and axial velocity are illustrated in figures 3 
and 4, respectively. In  figure 3, the curve designated (I) represents the solution f ‘ 
given by equation (28b) which is independent of e and becomes irrotational for 
large q.  The curves (11) and (111) are the function f’ obtained from the numerical 
solution of (57) fore = 4 and 8 = Q, respectively. A similar notation is used for the 
curves off in figure 4. 

It is immediately clear that well within the primary layer, say for q < 4, the 
values off ‘ and f derived from the power series expansion are very close to those 
obtained from the numerical solution. This means that, as indicated earlier, very 
close to the plate the dominant factor in determining the radial flow is the centri- 
fugal force, and neglect of convection is justified. 
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On the other hand, for 7 > 4 the curves begin to diverge, taking the forms 
illustrated. The radial velocity given by the numerical solution tends to zero 
instead of a finite value, thus satisfying the required boundary condition, at 
infinity. Similarly, the axial velocity tends asymptotically to a constant inflow 
in place of a linear function of distance from the plate. The divergence between the 
potential-flow solution and the secondary-layer solution decreases with 8, which 
is to be anticipated from an inspection of (57). 
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FIGURE 3. The steady radial flow. Variation off' = us/rws with q = J(h/2v)z. (I) f '  from 
series expansion; (11) f' from numerical solution, e = a; (111) f' from numerical solution, 

FIGURE 4. The steady axial flow. Variation off = - W , / ~ W E  J(h /2v)  with q = J(h/2v)z. 
(I) f from series expansion; (11) f from numerical solution, E = &; (111) f from numerical 
solution, E = +. 

6 = 4. 

Thus we conclude that a true representation of the induced steady radial-axial 
flow can only be obtained by including the convective inertia terms. These terms, 
although small, play a, decisive role in determining the character of the flow a t  
large distances from the plate. 

It is noteworthy that our solution is consistent with the well-known Karman 
rotating-disk solution for steady flow. In  the latter it is found that radial flow is 
confined within the boundary layer of the transverse velocity. Here also, inward 
axial flow prevents outward diffusion of vorticity beyond the layer, whose 
thickness is of order , / (v/w),  o being the steady angular velocity of the disk. 

In  conclusion it must be remarked that, with the new values off '  and f, the 
third approximation to the transverse velocity will be altered. But since there 
has been little variation in the values off'  andf close to the plate, it  is unlikely 
that the transverse velocity will suffer much change except possibly towards the 
edge of the layer, where it in any case tends to zero. Consequently, we expect the 
third-order values of shearing stress and moment derived in Q 5 to be valid. 
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